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This paper concludes the analysis of the onset of instability in a fluid heated from below 

in a gravitational field, in the case of a prime eigen number. 

It was shown in Cl] that the problem of convection in a fluid layer has secondary sta- 

tionary solutions, i. e. that bifurcation takes place. Paper @] established that new sta- 
tionary solutions occur, when an increasing temperature gradient reaches a critical value, 

and that in the case of the eigenvalue of a linearized problem being a prime number 

there are exactly two solutions. 

It is shown here with the aid of the perturbation theory that the secondary motions are 
stable, whereas the equilibrium solution loses stability, when the critical value of temper- 

ature is reached (Sections 1 to 5). The index of nontrivial solutions (defined as fixed 
points of corresponding operator equations) is computed, and found to be equal to t 1 
(Section 6). Proof is also given (Section 7) that in the critical case the equilibrium solu- 
tion is asymptotically stable (in a linear formulation there is stability, but it is not asymp- 
totic. 

Final conclusions are set out in Section 8, and a phase representation (Fig. 1) is given 
for small super-critical values of the temperature gradient of the system-under consider- 

ation. 

1 . Formulrtion of the problem. Let a fluid fill a bounded region fl, We 

shall assume that its boundary 3 &_ a solid wall &vith no-slip condition fulfilled), the 
temperature of which is known, and is a linear function of height. Then, the convection 

equations 

+-+vLw = (v’.V)v’ fVp’ +pT’g, div v’ = 0 

-T +xnl”= v’.VT’, 
(1.1) 

v’ 1s = 0, T'[s = cz + const 

admit the solution 
vo’ = 0, T,' = cz -j- const (1 .a) 

Let Co be the least eigenvalue of the corresponding linearized problem, and let (q, 7) 
he its corresponding eigen solution 

vncp--vy ==@g, divcp = 0, xnz = wp3, -c Is = 0, 

cpjs = @!, pPlIH1 = 1 (2.3) 

For 0 s Co , problem (1.1) has no stationary solutions other than (1.2) (see [2 to 4]), 

and all flows tend to the flow pattern (1.2), as t *co (” ). As was shown in [2], when C 

*) For Foot Note see next page. 
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reaches the value C, , a pair of new stationary solutions of the form 

VOk = i Z,,E(P j- (x,?w + Pp(p) &P + 0 (ES) (E z J&70) 

Toh. = F x&c + (x83 + &2) &9 + 0 (&,3) (k = 1, 2) 
(I .4) 

occur. Here, E is a small parameter, and w , 8 is the solution of problem 

v~w-~P=(cp*~h+P% ~n0=COWJ+(P'vT 
(1.5) 

div w = 0, w 1s = 0, qs = 0, (w*(p)fL = 0 

Constant &, is defined by the equality 

The single-valued solvability of problem (1.5) and the positive nature Of Constant Y 

were proved in [ 23 (see [2] for Lemmas 2.1 , 2.2 and 2.3). Constants PI, Bz may be 

considered as known, however, their explicit expressions have not been worked out here. 

as these do not matter in further considerations. The stability of flows (1.2) and (1.4) 

is studied further. 

2. The perturbation theory. Let problem (1.1) have for 0 = CO + 6~’ and 

small E , the stationary solution (v. , To ) 

C,? 

vg = z E%~;, To = (cll + e">z + To,:, Too= ; E"Tk (2-l) 
k=l Is=1 

To solve the problem of stability of solution (2.1) we shall construct variation equa- 

tions, and isolate time. As the result, we arrive at the spectral problem 

-~u+Y&l=(v,,*V)u+(u*v)Vo+vp+P~g, 
divu = O GW 

-- gT + XOT = (c,, + .?) u3 + vo- VT + u-Won, uIg=O, Tjs==0 

Problem (2.2) has its eigenvalue U, = 0 when c = 0, with all remaining eigenvalues 

contained within the left-hand half-plane. For small values of E the latter, in accord- 

ance with the perturbation theory [lo] are subject to little change, and remain in the 

left- hand half- plane. 
Strictly speaking the perturbation theory is applicable to a limited part of the spectrum 

only, but, as in [ll], the eigenvalues of roblem (2.2) with a positive real part, are limi- 

ted (uniformly with respect to (Z when PI c s co), and their number is finite. 
Thus, solution (2.1) will be stable, or unstable, depending on whether the eigenvalue 

0, = 0 moves to the left, or right as the result of perturbation. 

Let us look for the corresponding eigen solution of problem (2.2) in the form of a 

power series 

6 = ED1 + &%s -/- * - * ) u = ‘p + all + &%I2 + * . * 

T = z + ET1 + &ST2 + * . * (2.3) 

*) A general theorem as to the existence and uniqueness of system (1.1) with initial 
data is not known. The theorem of existence of a weak generaligd solution, and the 
theorem of the uniqueness of a smooth solution can be, however, proved. This is easily 
done by the methods developed in [ 5 and 61 (see alsdp]) : a two-dimensional problem, 
as well as the problem in which convection is disregarded, are solved as a whole ~7 to 95 
Here, all statements about “all solutions” refer to generalied solutions. 
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It is natural fo take the normalization condition in the form 

(u, ‘p ,,, = ’ aT z d.r =: 1 
s 
Cl 

Substituting (2. 3) into (X2), we find the confirmation that cp, 7 is a solution of sys- 
tem (1.3), while (u,, TV, a,), (u?, T?, oJ is found by solving problems 

YAUI = VP, + Pz,g + R” ‘~7~. ‘p) + 5191. divul = 0 

xAz, = cou~s + qd7T, + v1.V~ + bit. lll,Is = 0. f1 is = 0 (3.5j 

oh. cp)& = (1 

The following notation has been used here 

R’(u, v) = (u, V, v + (v, V)u, uh = i~i,~, II];,, uk3), R [u, v) = (u, V) v 

3. Strbilfty of secondary flows. When dealing with solutions (1.4), we 

must stipulate that in (2.1) 

Vl = T aorp, ?/‘s = ao2w ‘f pk. v, T, = icx,K T, = a’,,8 + f3kr (3.1) 

We shall prove that with this, the solution of problem (2.5) has the form 

0, = 0, u,= Rza()w, -c, = ? .%z,e (3.2) 

In fact, taking the scalar product of the first Eqs. (2.5) by c,Cp , and for the second by 

@g’T , then integrating over fi and adding, we obtain 

a~ic,S(PYiil+PRCt2rlsl-i) 

SL L$ - 
Therefore, 0, = 0 , and (3.2) follows directly from (1.5) and (2.5). 
Furthermore, by dealing in a likewise manner with system (2.6), we obtain 

With the aid of (3.1) and (3.2) we derive. 

I, = - 3a02 
I 
‘(‘p, V)q?.Wd~, 12 = - ho2 

\ 
- efp. v z Lc (3.4 

it 52 
Taking the scaIar product of the first of Eqs. (1.3) by Cp. and integrating over fl , we 

find J3= cp:ltd.r=-g 
! 

(3.5) 

NOW, by substituting in (3.4) for (Cp. V) Cp and 9 l V 7’ their expressions obtained from 
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(1.5). and taking into account (3.5) and (1.6). we arrive at 

I = 3a,sc,2 J(w, 0) + figIs = 2v (3.6) 
Hence, the eigenvalue Co = 0, after perturbation, is transformed into 

U = -2YG/ 10 + 0 (P”) < 0 (8 is small) (3.7) 
This proves that secondary motions (1.4) are asymptotically stable in a linear approx- 

imation. But in essence, the results obtained in [ 111 (with obvious alterations) are appli- 

cable to problem (1.1). Therefore, a nonlinear stability is also obtained, 

In the case of convection in a layer, the secondary flow stability with respect to per- 

turbations of like periodicity, follows from the foregoing. It may be thought that only 
an analysis of the effect of nonperiodic perturbations would show which of these flows 
can be obtained experimentally. This is the obvious path leading to the resolution of 

the question of the exceptional role of the hexagonally-symmetric flows. 

4. Inrtrbility of equilibrium, We shall now apply the perturbation theory 

to the problem of stability of solution (1.2). In this case the eigenvalue Uo = 0 is trans- 

formed by perturbations and becomes 

u = Ye2 / I, + 0 (es) > 0 (4.0 
For the derivation of Formula (4.1) it is obviously sufficient to assume that in (3.6) 

a,= 0. 
Thus, when parameter C passes through its critical value Co , the equilibrium solution 

(1.2) loses stability. Here this deduction is also justified for the case of the nonlinear 

system (1.1) with the aid results of [ 11 J, In [4] the instability was proved by another 

method of linear approximation. 

5. Proof of the perturbation theory. Problem(2.2) will be. reduced by 
transforming the Navier-Stokes linearized operator and the Laplace operator to the sys- 

tem of equations 
u = L PTg) + LR” (vo, u) + ah c-w 

T = G&,~Q + ~~RolF3 + Ho (vo.V T + u.V T,,b) + aB,,T 

Operators L and Bo are defined in more detail in [l-j, ,Operator L acts fully conti- 

nuously from L, (p > 6/6) into ~71, and operator Bo from Lp (p-> 6j,J into Xa. 
We eliminate T from this system. By virtue of (2.1) the operators at the right-hand 

side of (5.1) depend analytically on t: (for example, with respect to the norms of HI , 
Hz). Further to this, for small c , 0 each of these is a contraction operator(for c = 0, 
Q = 0 both are reduced to constants) in & ‘and flo , respectively. Therefore, the solu- 
tion of the second of Eqs. (5.1) with small fS, 0 and a fixed u E H, may be sought 

in the form of a power series 
T= $ &‘8~, (5.2) 

k, l=o 

In HZ , series (5.2) is convergent Substituting it into (5.1) , we obuiu 

0 00 = COBOUS, 0 10 = Bo h l m,+ u *VT,) 

8 = B,9,, = q,Bo2u,, 

024 = Bo (01 - oe,“; v2 - v&l + u ’ VT,) + B,u, (5.3) 

After the substitution of series (5.2) into the first of Eqs. (5.1). the latter becomea 
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With this, operator A is fully continuous and rigorously positive in H(see [I and 31 ). 
operator fl is fully continuous in HI and analytically dependent on CT , (5 (when these 

are small). Explicit expressions of operator-coefficients Nki can be derived without 

difficulty. We have, for example 

N,,u = LJ?” @1, u> + L (B&J, _V,,u = IAl + c,L @gB&) (5.5) 

N,,u = L (@,,g) + LRO (V?, u) 

We shall consider now Eqs. (5.4) for a specified small c as a problem in eigenvalues 

With respect to the nonlinear parameter U. In the following Lemma the specific nature 
of operators A , N is immaterial. 

Lemma 5.1 , Let d be a linear, fully self-adjoint operator in the Hilbert space 

fll. Co its prime characteristic number and Cp its corresponding eigenvector, Let oper- 
ator fl, continuous in fll , depend analytically on the small parameters c , CT, Let con- 
dition 

(idols, ‘p)ff, + 0 {<J.(i) 
be fulfilled, 

Then, for small (Z problem (5.4) has a unique small eigenvalue C which, like its cor- 
responding eigenvector u (subject to condition that (u, [P)H, = I), is analytically 
dependent on c. 

Proof . Problem (5.4) may be rewritten in the following equivalent form 

u - cOAu = Nu - (Nu. (P)~,(F z Nou, (u, ?1)& = 1 (5.7) 

(Nu, T)& = 0 (5.8) 

Then, in accordance with the Fredholm solvability condition, operator flo transfers 

any vector u E H, into a subspace where the inverse operator (I - cd-’ = Ro, identi- 

cally fixed by the requirement that (R. u, ql)H, = 0 is known. Hence, conditions (5.7) 

are equivalent to Eq. 
u = ‘$ + (I - c!n)-l Nau 15.9) 

Since f10 is analytically dependent on c, U,and flo = 0 when c = Q= 0,the right- 
hand side of (5.9) defines the cormaction operator for small c, CT. Solution u of Eq. 

(5.9) is, therefore, analytical with respect to c, G , and is of the form 

(5.10) 

Substituting (5.10) into (5. 8) we obtain Eq, 

fl(5, &)G 5 ek+rgZ+s (N 
kl%* %f~ = ’ @Ii) 

k, 1. r. s=o 

which for a specified c is satisfied by 0. 

Here, F( 0. e) is an analytical function. and F(O, 0) = 0. 
Solution Q of Eq.( 5.11) is unique md analytical with respect to c, since conditions 

of the theorem of the implicit function 

z c, o=. = (NoI’Q, “JH, + 0 

is satisfied, 
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The analytical character of vector II with respect to !Z now follows from (5.10). 

Lemma is proved. 
We may note that Lemma 5.1 is also valid for notself-adjoint operators (as well as 

for operators in a Banach space), if we substitute for the second factor in (5.12) the eigen- 

vector of the adjoint equation, Under the conditions of this Lemma the number 0 is 

reaL 

We shall now prove that condition (5.12) is fulfilled in the case of our problem. We 

note that operator L satisfies by definition the following identity : 

Consequently.(S. 5) and (5.13), when account is taken of the self-adjointness of oper- 
ator Bo , yield 

Y (N,,cp, ~9)~~ = - ‘p2 dx - Pgco * (IL.Q~)~ ds = --.I,, / co < 0 
h 

(5.14) 

In accordance with Lemma 5.1 the existence of expansions (2.3) follows from (5.14). 

The perturbation theory is thus proved. 

6. Indicer of rolutlonr, Stationary solutions of problem (1.1) satisfy the 

operator equation in space Hl with a fully continuous operator (see [ 1 to 31 ) 

v = K (v, c) (6.1) 

We shall show that the indices of solutions (1.2) and (1.4) representing fixed points of 
operator K are respectively - 1 and + 1, The knowledge of these indices may be useful 

in, for example, evaluating the number of solutions. 
For the computation of the index of a certain solution vo of Eq, (6.1) the Frechet 

differential Av, of operator K at point vo must be considered, and the sum of multi- 

plicities A of its characteristic numbers, lying on segment (0, 1) must be calculated. 
If 1 is not a characteristic number, then the index of the fixed point vo is (-I)* (see 

Cl21 ). 
The Frechet differential of operator K which corresponds to solution (1.2) is & (oper- 

ator A is defined by (5.4) ). When c >co , and c -Co is small, 1 is not its character- 

istic number, In this case the unique characteristic number along segment (0, 1) is co/c. 
It is a prime number : A = 1. Hence, the index of solution (1.2) is - 1 , 

We shall now prove that the index of each of the solutions (1.4) is + 1 . The Frechet 

differential Avo is of the form R? 

ffw 
which may be derived by stipulating 0 = 0 in (5.4). For small values of (Z operator 

AvO is close to c,A u , Consequently, in accordance with the perturbation theory [lo] 

it can’t have characteristic numbers along segment (0, 1) other than those obtained by 

perturbation of the characteristic number 1 of operator c,A . 
We shall show, however, that the latter lies outside segment (0, 1). We shall denote 

it by A, and the corresponding eigenvector by 9 , and shall seek expressions of these in 
the form h = 1 $- eal -i_ E2?“2 _r * * . , 11: = $ +- e*1 +- E$.~ -;- * * * ( (rp. p)& = 1 (6.3) 

This is permissible, since 1 is a prime characteristic number of operator &,A , and so 
is X . We substitute (6.3) into r-7 
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We then obtain for the definition of (A, I l/Q the following Eq. 

tpr = c+if*r -- Nto p /- hip. @FL PjH, -:: I, {if.5] 

Taking into account (5.5). (5.13). (5.3) and (“3.1) and the scalar product of (6.5) by 

v(Ps we derive LIVCO 1 - v (N,& +I, - -- 2’ (L/P (v,. p) .- I; (pge,,), ql)H, :-= 

=L: 
s 

[R” (VI, ?) j- Pge,,] @c i a,& 
s 

(P& \ req. V f&q3 -i_s. 6’~) dr =L: 

s-2 ia 

The following relationships have also to” be taken into account here 

r = Q&$p8, ? = ro.,lo, Ii 9 //Hr =.-z 1 

Hence. x, = 0. We note now that 

N&p = 3 2%& [i?, G.1 Y .-i-- $gBo fp‘C7zfj 

Comparing (6.5).(6.8) and (1.5), we obtain 

&-- F 2a0w 

Vector l/t2 and number ha are defined by Eq. 

** = ro.-I& -i- N&ir + iVa@ r I,?, @z, YD)& = 0 (i;.iO) 

Taking the scalar product of this Eq, by vep in HI, and using consecutively relation- 

ships (5,13),(5.5),(3.1).(6. 9),(6.7),(5.3) and (1.6), we obtain after a straightfarward, 
though somewhat cumbersome computation 

h, - z/co > 0 (6.ll) 

Hence, operator A, has no characteristic numbers along segment (0, X), a = 6, and 

the index of each of &e solutions (1.4) is equal to + 1 . 

7. Arymptotic rtrblllty in the critic&l CIUCJ~ Weshall prove that 
whenC=Qo, the equilibrium solution (1.2) is generally asymptotically stable, We qote 
that in this case there exists stability of the linearized problem, but it is not an asymp- 

totic stability, 

Mult~ply~ng the first Eq. of (I. 1) by csv = co (v’ - v,‘>, and the second by figT = 

= Bg (T’ - Gl’), integrating over 0 , and adding, we obtain the following relation- 

ships for perturbations v , T : 

uo (v, T) 
dr 

= -J(v, T), 

We stipulate that in (7.1) 
v = u + a9, T-==R+ar 

We shall define here parameter U = a( t) from condition 

I = (cou -‘p + pg.&) dc = 0 
ii 

Substituting (7,2) into (7. I), and using (1,3),, we obtain 

-$ IJo (u, fi) + a2Jo Ccp, r)I = - J(u, R,I 

(7.1) 

(7.2) 

(7.3) 

(74 
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Lemma 7.1 . FOI any u E H,, R E H,, which satisfy condition (7.3) the fol- 

lowing inequality is valid : J (u, R) > @&I (u, RI U.8 

where constant m > 0 is independent of u .R. 
Proof. The functional 

&(u, R) = i Hasd.i: Cf.61 

is weakly continuous in fl3 =& +a~ , bed&e of the full continuity of embedding of 

HI ,Ka inL2. Therefore relationship J, / J - @gJ3 reaches a positive maximum 
?G, in the subspace of space & , defined by condition (7.3). Since J Iv, 3’) > 0. 
with equality obtaining only with v = uq, T = a~, a = con& (se@ p)), therefore 

JJ/f’.--- @gJ, < ‘fz Pg (7.7) 

The equality in (7.7) is reached only when v = acp, T = (zz, a = con& Consequent- 

ly m < ‘in, pg. 
We now obtain inequality 

.3 (u, fl) r, (i - 2~gmo+lluil~: -93 11RL:) (7.8) 

from which we deduce directly inequality (7.5) by means of the embedding theorem. 
Lemma is proved. 

The following evaluation is deduced from equality (7.4) and Lemma 7.1 

J, (u, R) < e-mV* (ug, R,), uo = &o, % = fi jr-cl 17.9) 

Multiplying (7.4) by expml$, integrating from 0 to 03 with respect to 8, and using 
(7.9). we find ‘p 

I 
J-b, R)emlfdt <&Jo&,, I?,,) 011 < ln (X10] 

0 
We shall now evaluate function U( 6) from (7.2), We substitute the following expres- 

sions into (1.1) : 
v’ = v = u I_ acp, T’ = cz + T = cz + R $ ar (7.11) 

Taking into account Eqs. (1.3) and (?,3), we multiply the obtained Eqs. respectively 
by cp and t9Q’T/co ; integrating over n, then adding, we obtain 

da -=MafN, ( 
M = - Jo ((% V) u, ‘g-v m I Jo fs, %I 

dt N = --ow P)u, U*V~~/Jo(?s TF) 1 
(7.12) 

Integration by parts yields the following expressions for parameters M, fl, 

(7.13) 

Tfie following estimates are obtained directly from (7.13) and (7.9) 

Ma < mBJo (u, R) < me-mfJo, (~0, R,) 

lN[\imaJu(u,R)~R13CrmtJo(Ug,Ro) (7.14) 

Constants Q , & are independent of u ,B . 
Expressing a in terms of M and N from (7. 12), and taking into consideration (7.141, 

we obtain the confirmation that with 6 +co CZ( f) tends to a certain limit ~2, . It can 
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be easily shown that, if a certain solution (v ‘, ?’ ) of problem (1.1) has a limit in the 

sense of ,& when t -+m, then the latter is a stationary solution of this problem. prom 
this it follows, by virtue of (7. 9) that (arty, c,,z -:- U,T) is a stationary solution, ijut, 

as was shown in p], there are no nontrivial stationary solutions when C =z Co . Therefore, 
am= 0. 

It has been thus proved that with t --)a~, all solutions of problem (1, I) tend to the eyui- 
librium solution { 1.2). 

This result may be somewhat refined. Namely, by stipulating for the decrease of coef- 
ficient cT( 8) an asymptotic behavior of a power kind, which proves to be 

n (t) - no (1 $_ 26f102 t:-‘.: (I + ooi, (x0 ZY. fl ‘0). 6=7: j,) ‘L/J, zj ‘7.15) 

Constant y was defined in (1.6) and is positive. 

8. Conclurfon, We shall formulate here the obtained results which together give 

a full qualitative description of the first loss of stability in a convection problem for the 

case in which the eigenvalue Co is a 

h YJ prime number, A number of examples 

/ 
in which the condition of primality 

f occurs have been analyzed in Cl to 31 

(a spatially periodic problem, convection 
+ in a horizontal layer, convection in a 

long vertical cylinder). 

1. The stationary solution (1.2) of 

Fig, 1 
problem (1.1) is unique when Z 5% , 
and all solutions of problem (1. I) tend 
to it when 6-m. 

These facts were established in yZ to 41; proof of the asymptotic stability in the criti- 
cal case was given above, 

2. For small positive c -co there exist exactly two secondary stationary flows (1.4) 
which are asymptotically stable. The equilibrium solution (1.2) in this case loses its 

stability. 
With the use of results of [ 111, we arrive at the pattern in a phase space (a point of 

which is the pair (v, r)), shown on Fig. 1 : multiplicity r of co-dimension 1 divides it 
into two “curved subspaces”, each containing one of each points 1 and 2 , attracting all 

the trajectories passing through these, The trajectories which originate on r tend to an 

equilibrium solutiorL A projection of this pattern onto a plane spanning the eigenvector 

(ep, 7) and a certain other vector orthogonal to it, is shown in Fig. 1. Arrows indicate 
the direction of motion of points along their trajectories with increasing time 6. 
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